
AP Calculus: l’Hôpital’s Rule

Very early in this course we encountered a fundamental “��� indeterminate form,”
namely the limit
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What makes this limit interesting is that both numerator and denominator tend to zero in
the limit, making impossible a naive computation of the limiting ratio. Indeed, most in-
teresting limits—such as those defining the derivative—are “indeterminate” in the sense

that they are of the form ���
���
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where the numerator and denominator both tend to 0

(or to�). Students learn to compute the derivatives of trigonometric functions only after
they have been shown that the limit
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At the same time, you’ll no doubt remember
that the computation of this limit was geomet-
rical in nature and involved an analysis of the
diagram to the right.

The above limit is called a 0/0 indeterminate form because the limits of both the nu-
merator and denominator are 0.

You’ve seen many others; here are two more:
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Note that in both cases the limits of the numerator and denominator are both 0. Thus,
these limits, too, are 0/0 indeterminate forms.

While the above limits can be computed using purely algebraic methods, there is an
alternative—and often quicker—method that can be used when algebra is combined with
a little differential calculus.

Formally, a 0/0 indeterminate form is a limit of the form ���
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where both ���
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���� 	 �. Assume, in addition, that � and � are both differentiable and that � �

and �� are both continuous at � 	 � (a very reasonable assumption, indeed!). Then we
have
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(by continuity of the derivatives)

This result we summarize as

l’Hôpital’s Rule (0/0). Let � and � be functions differentiable on some interval containing
� 	 �, that ���
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����, and assume that � � and �� are continuous at � 	 �.

Then
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As a simple illustration, watch this:
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which agrees with the answer obtained algebraically.

In a similar manner, one defines��� indeterminate forms; these are treated as above,
namely by differentiating numerator and denominator:

l’Hôpital’s Rule �����. Let � and � be functions differentiable on some interval contain-
ing � 	 �, that ���
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����, and assume that � � and �� are continuous at

� 	 �. Then
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There are other indeterminate forms as well: � � �� ��� and��. These can be treated
as indicated in the examples below.

EXAMPLE 1. Compute ���
����

�� ���. Note that this is a � � � indeterminate form. It can

easily be converted algebraically to an �
�

indeterminate form and handled as above:
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Other indeterminate forms can be treated as in the following examples.

EXAMPLE 2. Compute ���
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. Here, if we set � equal to this limit (if it exists!),

then we have, by continuity of the logarithm, that
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This says that ��� 	 �� which implies that � 	 	��.

EXAMPLE 3. This time, try ���
��������

���� 
�	
� �. The same trick applied above works here as

well. Setting � to be this limit, we have
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It follows that ���
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EXERCISES

1. For each improper integral below, compute its value (which might be �� or deter-
mine that the integral does not exist.
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2. Using l’Hôpital’s rule if necessary, compute the limits indicated below:
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convert this “���” indeterminate

form to one of the forms discussed
above!)
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