AP Calculus: I'Hopital’s Rule

Very early in this course we encountered a fundamental “0/0 indeterminate form,”
namely the limit
. sinx
lim
x—0
What makes this limit interesting is that both numerator and denominator tend to zero in
the limit, making impossible a naive computation of the limiting ratio. Indeed, most in-
teresting limits—such as those defining the derivative—are “indeterminate” in the sense

that they are of the form lim % where the numerator and denominator both tend to 0
r—ra g T
(or to o0). Students learn to compute the derivatives of trigonometric functions only after

they have been shown that the limit
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At the same time, you’ll no doubt remember
that the computation of this limit was geomet- x [ sin x
rical in nature and involved an analysis of the
diagram to the right.

The above limit is called a 0/0 indeterminate form because the limits of both the nu-
merator and denominator are 0.
You’ve seen many others; here are two more:
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Note that in both cases the limits of the numerator and denominator are both 0. Thus,
these limits, too, are 0/0 indeterminate forms.

While the above limits can be computed using purely algebraic methods, there is an
alternative—and often quicker—method that can be used when algebra is combined with
a little differential calculus.

Formally, a 0/0 indeterminate form is a limit of the form lim o) where both lim f(x) =

T—ra g €T T—ra

0 and lim g(z) = 0. Assume, in addition, that f and g are both differentiable and that f’

and ¢’ are both continuous at z = «a (a very reasonable assumption, indeed!). Then we
have



= =4 (by continuity of the derivatives)
lim ¢'(x)
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This result we summarize as

I’Hopital’s Rule (0/0). Let f and g be functions differentiable on some interval containing
r = a, that lim f(z) = 0 = lim g(x), and assume that f' and ¢' are continuous at x = a.
T—a r—a

Then
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As a simple illustration, watch this:
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which agrees with the answer obtained algebraically.
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In a similar manner, one defines oo /oo indeterminate forms; these are treated as above,
namely by differentiating numerator and denominator:

I’'Hopital’s Rule (co/o0). Let f and g be functions differentiable on some interval contain-
ing x = a, that lim f(z) = +oo = lim g(z), and assume that f' and ¢’ are continuous at
T—ra

r—a
z = a. Then
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There are other indeterminate forms as well: 0 - oo, 1°°, and oo®. These can be treated
as indicated in the examples below.

EXAMPLE 1. Compute lim z?Inz. Note that this is a 0 - co indeterminate form. It can

z—0t

easily be converted algebraically to an 22 indeterminate form and handled as above:



| , 1 —x?
lim z?lnz = lim ne H im /x = lim - =0.
20+ z—0t (1/22) o0t —2/23 a0t 2

Other indeterminate forms can be treated as in the following examples.
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EXAMPLE 2. Compute lim (1 — — ) . Here, if we set L equal to this limit (if it exists!),
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then we have, by continuity of the logarithm, that

In, = Inlim (1 — é)
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This says that In L. = —4 which implies that I = e=*.

EXAMPLE 3. This time, try , l(in/a) (cos 0)?, The same trick applied above works here as
—(m/2)~

well. Setting L to be this limit, we have

InL = In lim (cosf)™s’
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It follows that  lim  (cos §)“? = 1.
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EXERCISES

1. For each improper integral below, compute its value (which might be +oco or deter-
mine that the integral does not exist.
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2. Using I’Hopital’s rule if necessary, compute the limits indicated below:

T -1 form to one of the forms discussed
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(h) lim+(ln z—Insinz) (Hint: you needto (p) lir? InzIn(1 — z) (Are (0) and (p) re-
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convert this “oco — oo” indeterminate ally different?)



